Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.939
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612821

RESUMO

Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate. The antibacterial effect of the Zn(II) complexes was studied against planktonic bacterial cells of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains. The results showed a moderate biocide activity in both types of planktonic bacteria, which arises from the metal complexation to the Schiff base ligand. Importantly, we confirmed the crucial effect of the metal, with Zn(II) improving the activity of Cu(II) counterparts previously reported. On the other hand, the impact of the inorganic ligands was not significant for the antibacterial effect but was relevant for the complex solubility. Finally, as proof of concept of topical antibacterial formulation, we formulated an emulsion containing the most lipophilic Zn(II) complex and confirmed a sustained release for 24 h in a vertical cell diffusion assay. The promising activity of iminopyridine Zn(II) complexes is potentially worth exploring in more detailed studies.


Assuntos
Complexos de Coordenação , Zinco , Zinco/farmacologia , Ligantes , Bases de Schiff/farmacologia , Nitratos , Complexos de Coordenação/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Plâncton
2.
Acc Chem Res ; 57(8): 1174-1187, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557015

RESUMO

ConspectusSupramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Platina/química
3.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593587

RESUMO

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico
4.
Eur J Med Chem ; 270: 116378, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604098

RESUMO

Infections caused by Staphylococcus aureus (S. aureus) are increasing difficult to treat because this pathogen is easily resistant to antibiotics. However, the development of novel antibacterial agents with high antimicrobial activity and low frequency of resistance remains a huge challenge. Here, building on the coupling strategy, an adamantane moiety was linked to the membrane-active Ru-based structure and then developed three novel metalloantibiotics: [Ru(bpy)2(L)](PF6)2 (Ru1) (bpy = 2,2-bipyridine, L = amantadine modified ligand), [Ru(dmb)2(L)](PF6)2 (Ru2) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(dpa)2(L)](PF6)2 (Ru3), (dpa = 2,2'-dipyridylamine). Notably, complex Ru1 was identified to be the best candidate agent, showing greater efficacy against S. aureus than most of clinical antibiotics and low resistance frequencies. Mechanism studies demonstrated that Ru1 could not only increase the permeability of bacterial cell membrane and then caused the leakage of bacterial contents, but also promoted the production of reactive oxygen species (ROS) in bacteria. Importantly, complex Ru1 inhibited the biofilm formation, exotoxin secretion and increased the potency of some clinical used antibiotics. In addition, Ru1 showed low toxic in vivo and excellent anti-infective efficacy in two animal infection model. Thus, Ru-based metalloantibiotic bearing adamantane moiety are promising antibacterial agents, providing a certain research basis for the future antibiotics research.


Assuntos
Adamantano , Complexos de Coordenação , Rutênio , Animais , Antibacterianos/farmacologia , Adamantano/farmacologia , Staphylococcus aureus , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
5.
Eur J Med Chem ; 268: 116295, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437750

RESUMO

This paper introduces a new ligand, 4,6-dichloro-5-(1H-imidazo [4,5-f]phenanthroline-2-yl)pyrimidin-2-amine (DPPA), and its corresponding new iridium(III) complexes: [Ir(ppy)2(DPPA)](PF6) (2a) (where ppy represents deprotonated 2-phenylpyridine), [Ir(bzq)2(DPPA)](PF6) (2b) (with bzq indicating deprotonated benzo[h]quinoline), and [Ir(piq)2(DPPA)](PF6) (2c) (piq denoting deprotonated 1-phenylisoquinoline). The cytotoxic effects of both DPPA and 2a, 2b, and 2c were evaluated against human lung carcinoma A549, melanoma B16, colorectal cancer HCT116, human hepatocellular carcinoma HepG2 cancer cell lines, as well as the non-cancerous LO2 cell line using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. While DPPA exhibited moderate anticancer activity toward A549, B16, HCT116 and HepG2 cells, complexes 2a, 2b, and 2c displayed remarkable efficacy against A549, B16, and HCT116 cells. The cell colonies and wound healing were investigated. Moreover, various aspects of the anticancer mechanisms were explored. The cell cycle analyses revealed that the complexes block cell proliferation of A549 cells during the S phase. Complex 2c induce an early apoptosis, while 2a and 2b cause a late apoptosis. The interaction of 2a, 2b and 2c with endoplasmic reticulum and mitochondria was identified, leading to elevated ROS and Ca2+ amounts. This resulted in a reduced mitochondrial membrane potential, mitochondrial permeability transition pore opening, and an increase of cytochrome c. Also, ferroptosis was investigated through measurements of intracellular glutathione (GSH), malondialdehyde (MDA), and recombinant glutathione peroxidase (GPX4) protein expression. The pyroptosis was explored via cell morphology, release of lactate dehydrogenase (LDH) and expression of pyroptosis-related proteins. RNA sequencing was applied to examine the signaling pathways. Western blot analyses illuminated that the complexes regulate the expression of Bcl-2 family proteins. Additionally, an in vivo antitumor study demonstrated that complex 2c exhibited a remarkable inhibitory rate of 58.58% in restraining tumor growth. In summary, the findings collectively suggest that the iridium(III) complexes induce cell death via ferroptosis, apoptosis by a ROS-mediated mitochondrial dysfunction pathway and GSDMD-mediated pyroptosis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ferroptose , Humanos , Linhagem Celular Tumoral , Irídio/farmacologia , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Mitocôndrias
6.
J Inorg Biochem ; 255: 112523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489864

RESUMO

The prevalence of antibiotic-resistant pathogenic bacteria poses a significant threat to public health and ranks among the principal causes of morbidity and mortality worldwide. Antimicrobial photodynamic therapy is an emerging therapeutic technique that has excellent potential to embark upon antibiotic resistance problems. The efficacy of this therapy hinges on the careful selection of suitable photosensitizers (PSs). Transition metal complexes, such as Ruthenium (Ru) and Iridium (Ir), are highly suitable for use as PSs because of their surface plasmonic resonance, crystal structure, optical characteristics, and photonics. These metals belong to the platinum family and exhibit similar chemical behavior due to their partially filled d-shells. Ruthenium and Iridium-based complexes generate reactive oxygen species (ROS), which interact with proteins and DNA to induce cell death. As photodynamic therapeutic agents, these complexes have been widely studied for their efficacy against cancer cells, but their potential for antibacterial activity remains largely unexplored. Our study focuses on exploring the antibacterial photodynamic effect of Ruthenium and Iridium-based complexes against both Gram-positive and Gram-negative bacteria. We aim to provide a comprehensive overview of various types of research in this area, including the structures, synthesis methods, and antibacterial photodynamic applications of these complexes. Our findings will provide valuable insights into the design, development, and modification of PSs to enhance their photodynamic therapeutic effect on bacteria, along with a clear understanding of their mechanism of action.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Rutênio/farmacologia , Rutênio/química , Irídio/farmacologia , Irídio/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
7.
J Inorg Biochem ; 255: 112524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507993

RESUMO

Copper can be opportunely complexed to modulate oncogenic pathways, being a promising strategy for cancer treatment. Herein, three new copper(II) complexes containing long-chain aliphatic hydrazides and 1,10-phenanthroline (1,10-phen), namely, [Cu(octh)(1,10-phen)(H2O)](NO3)21, [Cu(dech)(1,10-phen)(H2O)](NO3)22 and [Cu(dodh)(1,10-phen)(H2O)](NO3)2.H2O 3 (where octh = octanoic hydrazide, dech = decanoic hydrazide, dodh = dodecanoic hydrazide) were successfully prepared and characterized by several physical-chemical methods. Furthermore, X-ray structural analysis of complex 2 indicated that the geometry around the copper(II) ion is distorted square-pyramidal, in which hydrazide and 1,10-phenanthroline act as bidentate ligands. A water molecule in the apical position completes the coordination sphere of the metal ion. All new copper(II) complexes were cytotoxic to breast cancer cell lines (MCF7, MDA-MB-453, MDA-MB-231, and MDA-MB-157) and selective when compared to the non tumor lineage MCF-10A. In particular, complex 2 showed half-maximal inhibitory concentration (IC50) values ranging between 2.7 and 13.4 µM in MDA-MB231 cells after 24 and 48 h of treatment, respectively. Furthermore, this complex proved to be more selective for tumor cell lines when compared to doxorubicin and docetaxel. Complex 2 inhibited the clonogenicity of MDA-MB231 cells, increasing adenosine diphosphate (ADP) hydrolysis and upregulating ecto-nucleoside triphosphate diphosphohydrolase 1 (ENTPD1) transcriptional levels. In this sense, we suggest that the inhibitory effect on cell proliferation may be related to the modulation of adenosine monophosphate (AMP) levels. Thus, a novel copper(II) complex with increased cytotoxic effects and selectivity against breast cancer cells was obtained, contributing to medicinal chemistry efforts toward the development of new chemotherapeutic agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias de Mama Triplo Negativas , Humanos , Cobre/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Hidrazinas , Hidrólise , Antineoplásicos/farmacologia , Antineoplásicos/química , Fenantrolinas/farmacologia , Fenantrolinas/química , Difosfato de Adenosina , Cristalografia por Raios X
8.
Dalton Trans ; 53(14): 6410-6415, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501501

RESUMO

An asymmetric bi-nuclear copper(II) complex with both cytotoxic and immunogenic activity towards breast cancer stem cells (CSCs) is reported. The bi-nuclear copper(II) complex comprises of two copper(II) centres bound to flufenamic acid and 3,4,7,8-tetramethyl-1,10-phenanthroline. The bi-nuclear copper(II) complex exhibits sub-micromolar potency towards breast CSCs grown in monolayers and three-dimensional cultures. Remarkably, the bi-nuclear copper(II) complex is up to 25-fold more potent toward breast CSC mammospheres than salinomycin (a gold standard anti-breast CSC agent) and cisplatin (a clinically administered metallodrug). Mechanistic studies showed that the bi-nuclear copper(II) complex readily enters breast CSCs, elevates intracellular reactive oxygen species levels, induces apoptosis, and promotes damage-associated molecular pattern release. The latter triggers phagocytosis of breast CSCs by macrophages. As far as we are aware, this is the first report of a bi-nuclear copper(II) complex to induce engulfment of breast CSCs by immune cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ácido Flufenâmico/metabolismo , Cobre/metabolismo , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Células-Tronco Neoplásicas
9.
Mol Pharm ; 21(4): 1987-1997, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507593

RESUMO

The misuse and overdose of antimicrobial medicines are fostering the emergence of novel drug-resistant pathogens, providing negative repercussions not only on the global healthcare system due to the rise of long-term or chronic patients and inefficient therapies but also on the world trade, productivity, and, in short, to the global economic growth. In view of these scenarios, novel action plans to constrain this antibacterial resistance are needed. Thus, given the proven antiproliferative tumoral and microbial features of thiosemicarbazone (TSCN) ligands, we have here synthesized a novel effective antibacterial copper-thiosemicarbazone complex, demonstrating both its solubility profile and complex stability under physiological conditions, along with their safety and antibacterial activity in contact with human cellular nature and two most predominant bacterial strains, respectively. A significant growth inhibition (17% after 20 h) is evidenced over time, paving the way toward an effective antibacterial therapy based on these copper-TSCN complexes.


Assuntos
Anti-Infecciosos , Complexos de Coordenação , Compostos Organometálicos , Tiossemicarbazonas , Humanos , Cobre/farmacologia , Tiossemicarbazonas/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia
10.
Dalton Trans ; 53(12): 5616-5623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38439632

RESUMO

The chemokine receptor CXCR4 is implicated in multiple diseases including inflammatory disorders, cancer growth and metastasis, and HIV/AIDS. CXCR4 targeting has been evaluated in treating cancer metastasis and therapy resistance. Cyclam derivatives, most notably AMD3100 (Plerixafor™), are a common motif in small molecule CXCR4 antagonists. However, AMD3100 has not been shown to be effective in cancer treatment as an individual agent. Configurational restriction and transition metal complex formation increases receptor binding affinity and residence time. In the present study, we have synthesized novel trans-IV locked cyclam-based CXCR4 inhibitors, a previously unexploited configuration, and demonstrated their higher affinity for CXCR4 binding and CXCL12-mediated signaling inhibition compared to AMD3100. These results pave the way for even more potent CXCR4 inhibitors that may provide significant efficacy in cancer therapy.


Assuntos
Complexos de Coordenação , Ciclamos , Compostos Heterocíclicos , Benzilaminas , Complexos de Coordenação/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Receptores CXCR4/antagonistas & inibidores
11.
Dalton Trans ; 53(13): 5957-5965, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38456809

RESUMO

Photodynamic therapy is an emerging tumor therapy that kills tumor cells by activating reactive oxygen species (ROS) produced by photosensitizers. Mitochondria, as an important organelle, are the main generator of cellular ROS. Therefore, the development of photosensitizers capable of targeting mitochondria could significantly enhance the efficacy of photodynamic therapy. In this study, two novel ruthenium(II) complexes, Ru-1 and Ru-2, were designed and synthesized, both of which were functionalized with α,ß-unsaturated ketones for sensing of glutathione (GSH). The crystal structures of the two complexes were determined and they exhibited good recognition of GSH by off-on luminescence signals. The complex Ru-2 containing aromatic naphthalene can enter the cells and react with GSH to generate a strong luminescence signal that can be used to monitor intracellular GSH levels through imaging. Ru-2 also has an excellent mitochondrial localization ability with a Pearson's coefficient of 0.95, which demonstrates that it can efficiently target the mitochondria of tumor cells to enhance the effectiveness of photodynamic therapy as a photosensitizer.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Rutênio/farmacologia , Rutênio/química , Espécies Reativas de Oxigênio , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Fotoquimioterapia/métodos , Mitocôndrias , Glutationa
12.
Dalton Trans ; 53(13): 5993-6005, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38469684

RESUMO

Recently, achieving selective cancer therapy with trifling side effects has been a great challenge in the eradication of cancer. Thus, to amplify the cytoselective approach of complexes, herein, we developed a series of Re(I)[2-aryl-1H-imidazo[4,5-f][1,10]phenanthroline] tricarbonyl chloride complexes and screened their potency against HeLa and MCF-7 cell lines together with the evaluation of their toxicity towards a normal kidney cell line (HEK-293). On meticulous investigation, complex [ReI(CO)3Cl(K2-N,N-(2c))] (3c) was found to be the most potent anticancer entity among other complexes. Complex 3c also showed competency to induce apoptosis in MCF-7 cells through G2/M phase cell-cycle arrest in association with the generation of ample reactive oxygen species (ROS), eventually leading to DNA intercalation and internucleosomal cleavage. The order of the cytotoxicity of these complexes depended on their lipophilic character and the electron-withdrawing halogen substitution at the para-position of the phenyl ring in the imidazophenanthroline ligand.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Fenantrolinas/farmacologia , Cloretos , Células HEK293 , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , DNA/metabolismo , Dano ao DNA , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Apoptose , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
13.
J Inorg Biochem ; 255: 112541, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554578

RESUMO

Our prior studies have illustrated that the uracil ruthenium(II) diimino complex, [Ru(H3ucp)Cl(PPh3)] (1) (H4ucp = 2,6-bis-((6-amino-1,3-dimethyluracilimino)methylene)pyridine) displayed high hypoglycemic effects in diet-induced diabetic rats. To rationalize the anti-diabetic effects of 1, three new derivatives have been prepared, cis-[Ru(bpy)2(urdp)]Cl2 (2) (urdp = 2,6-bis-((uracilimino)methylene)pyridine), trans-[RuCl2(PPh3)(urdp)] (3), and cis-[Ru(bpy)2(H4ucp)](PF6)2 (4). Various physicochemical techniques were utilized to characterize the structures of the novel ruthenium compounds. Prior to biomolecular interactions or in vitro studies, the stabilities of 1-4 were monitored in anhydrous DMSO, aqueous phosphate buffer containing 2% DMSO, and dichloromethane (DCM) via UV-Vis spectrophotometry. Time-dependent stability studies showed ligand exchange between DMSO nucleophiles and chloride co-ligands of 1 and 3, which was suppressed in the presence of an excess amount of chloride ions. In addition, the metal complexes 1 and 3 are stable in both DCM and an aqueous phosphate buffer containing 2% DMSO. In the case of compounds 2 and 4 with no chloride co-ligands within their coordination spheres, high stability in aqueous phosphate buffer containing 2% DMSO was observed. Fluorescence emission titrations of the individual ruthenium compounds with bovine serum albumin (BSA) showed that the metal compounds interact non-discriminately within the protein's hydrophobic cavities as moderate to strong binders. The metal complexes were capable of disintegrating mature amylin amyloid fibrils. In vivo glucose metabolism studies in liver (Chang) cell lines confirmed enhanced glucose metabolism as evidenced by the increased glucose utilization and glycogen synthesis in liver cell lines in the presence of complexes 2-4.


Assuntos
Antineoplásicos , Complexos de Coordenação , Diabetes Mellitus Experimental , Rutênio , Ratos , Animais , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Soroalbumina Bovina/química , Rutênio/química , Dimetil Sulfóxido , Hipoglicemiantes/farmacologia , Cloretos , Diabetes Mellitus Experimental/tratamento farmacológico , Piridinas/química , Peptídeos , Compostos de Rutênio , Glucose , Fosfatos , Antineoplásicos/farmacologia , Ligantes
14.
J Med Chem ; 67(7): 5813-5836, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518246

RESUMO

Eight 2,2':6',2″-terpyridines, substituted at the 4'-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Complexos de Coordenação , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Apoptose , Proliferação de Células , Cristalografia por Raios X
15.
Inorg Chem ; 63(13): 5783-5804, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502532

RESUMO

In recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Animais , Embrião de Galinha , Humanos , Feminino , Linhagem Celular Tumoral , Antineoplásicos/química , Platina/farmacologia , Cobalto/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Apoptose
16.
J Inorg Biochem ; 254: 112517, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460482

RESUMO

Developing new antimicrobials to combat drug-resistant bacterial infections is necessary due to the increasing problem of bacterial resistance. In this study, four metallic ruthenium complexes modified with benzothiazoles were designed, synthesized and subjected to bio-evaluated. Among them, Ru-2 displayed remarkable inhibitory activity against Staphylococcus aureus (S. aureus) with a minimum inhibitory concentration (MIC) of 1.56 µg/mL. Additionally, it showcased low hemolytic toxicity (HC50 > 200 µg/mL) and the ability to effectively eradicate S. aureus without fostering drug resistance. Further investigation into the antibacterial mechanism suggested that Ru-2 may target the phospholipid component of S. aureus, leading to the disruption of the bacterial cell membrane and subsequent leakage of cell contents (nucleic acid, protein, and ONPG), ultimately resulting in the death of the bacterial cell. In vivo studies, both the G. mellonella larvae and the mouse skin infection models were conducted, indicated that Ru-2 could potentially serve as a viable candidate for the treatment of S. aureus infection. It exhibited no toxic or side effects on normal tissues. The results suggest that benzothiazole-modified ruthenium complexes may have potential as membrane-active antimicrobials against drug-resistant bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Complexos de Coordenação , Staphylococcus aureus Resistente à Meticilina , Rutênio , Animais , Camundongos , Staphylococcus aureus , Rutênio/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Benzotiazóis/farmacologia , Complexos de Coordenação/farmacologia , Testes de Sensibilidade Microbiana
17.
Dalton Trans ; 53(10): 4580-4597, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349214

RESUMO

Liver cancer is one of the leading causes of death that motivating scientists worldwide to synthesize novel chemotherapeutics. Ru(II)-polypyridyl complexes are extensively studied for possible therapeutic and cellular applications due to their tunable coordination chemistry, structural diversity, ligand-exchange kinetics, accessible redox states, and rich photophysical or photochemical properties. Herein, we have synthesized a series of Ru(II) polypyridyl complexes [RuII(N^N)2(ox)] (1-3), where ox is oxalate (C2O42-) and N^N is 1,10-phenanthroline (phen) (1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (2), and dipyrido[3,2,-a:2',3'-c]phenazine (dppz) (3). Oxalate (ox2-) was opted as a bioactive dioxo ligand to prevent facile hydrolysis in aqueous media, thereby increasing the stability of the Ru(II)-polypyridyl complexes in physiological media. We thoroughly characterized all the complexes using ESI-MS, FT-IR, UV-vis, and 1H NMR spectroscopy and other physicochemical methods. The complexes were stable under physiological conditions and under low-energy green LED light (λirr = 530 nm). However, the photoirradiation of complexes resulted in the efficient generation of singlet oxygen (1O2) as a major reactive oxygen species (ROS). The role of the extended aromatic conjugation of the N^N-donor ligands in the complexes was demonstrated by their binding propensities with CT-DNA and bovine serum albumin (BSA). Both DNA intercalation and groove binding were evidenced, while tryptophan (Trp) and tyrosine (Tyr) binding site preferences were revealed from the synchronous fluorescence spectra (SFS) of BSA. The cytotoxic profiling of the complexes performed on hepatocellular carcinoma cells (HepG2) in the dark and in the presence of green light indicated their dose-dependent cytotoxicity. The [RuII(N^N)2(ox)] complexes exhibited enhanced photocytotoxicity mediated by efficient generation of cytotoxic 1O2 and effective interaction with DNA. All the complexes were internalized by the HepG2 liver cancer cells efficiently and localized to the cytoplasm and nucleus. The complexes exhibited potent anti-proliferative, anti-clonogenic, and anti-migratory effects on the cancer cells, suggesting their potential for therapeutic applications.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Rutênio/farmacologia , Rutênio/química , Ligantes , Oxalatos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
18.
Dalton Trans ; 53(11): 5073-5083, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375910

RESUMO

A series of Pd(II) complexes of the general formula [PdX(NNS)] (X = Cl, Br, I, NCS and phenyl-tetrazole-thiolato; NNS = 2-quinolinecarboxyaldehyde-N4-phenylthiosemicarbazone) was tested against four malignant cell lines for their antiproliferative properties and the outcomes were compared to those seen in normal mouse splenocytes. Various auxiliary ligands were substituted in order to investigate the impact of the character of the ligand on the cytotoxicity of this class of Pd(II) complexes. The iodo complex was the most cytotoxic compound towards the Caco-2 cell line in this study. The improved apoptosis and necrosis cell modes were in accordance with the fragmentation results of DNA, which revealed increased fragmentation terminals, especially in isothiocyanate and tetrazole-thiolato complexes. After 24 hours, at half the IC50 of each complex, the complex-treated cells exhibited considerable genotoxicity when compared to the corresponding non-treated control especially in the case of isothiocyanate and tetrazole-thiolato complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Tiossemicarbazonas/farmacologia , Ligantes , Células CACO-2 , Antineoplásicos/farmacologia , Apoptose , Tetrazóis , Isotiocianatos/farmacologia , Complexos de Coordenação/farmacologia
19.
Dalton Trans ; 53(11): 5167-5179, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38380977

RESUMO

Cancer is a perilous life-threatening disease, and attempts are constantly being made to create multinuclear transition metal complexes that could lead to the development of potential anticancer medications and administration procedures. Hence, this work aims to design, synthesize, characterize, and assess the anticancer efficacy of ruthenium p-cymene complexes incorporating N,N'-bis(4-substituted benzoyl)hydrazine ligands. The formation of the new complexes (Ru2H1-Ru2H3) has been thoroughly established by elemental analysis, and FT-IR, UV-vis, NMR, and HR-MS spectral techniques. The solid-state molecular structures of the complexes Ru2H1 and Ru2H3 have been determined using the SC-XRD study, which confirms the N, O, and Cl-legged piano stool pseudo-octahedral geometry of each ruthenium(II) ion. The stability of these complexes in the solution state and their lipophilicity profile have been determined. Furthermore, the title complexes were tested for their in vitro anticancer activity against cancerous H460 (lung cancer cells), SkBr3 (breast cancer cells), HepG2 (liver cancer cells), and HeLa (cervical cancer cells) along with non-cancerous (HEK-293) cells. The IC50 results revealed that complex Ru2H3 exhibits potent activity against the proliferation of all four cancer cells and outscored the effect of the standard metallodrug cisplatin. This may be attributed to the presence of a couple of lipophilic electron-donating methoxy groups in the ligand scaffold and also the ruthenium(II) p-cymene motifs. Advantageously, all the complexes (Ru2H1-Ru2H3) displayed cytotoxic specificity only towards cancerous cells by leaving the off-target non-cancerous cells undamaged. Acridine orange/ethidium bromide (AO/EB) staining, Hoechst 33342, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) staining assays were used to investigate the apoptotic pathway and ROS levels in mitochondria. The results of western blot analysis confirmed that the complexes triggered apoptosis through an intrinsic mitochondrial pathway by upregulating Bax and downregulating Bcl-2 proteins. Finally, the extent of apoptosis triggered by the complex Ru2H3 was quantified with the aid of flow cytometry using the Annexin V-FITC/propidium iodide (PI) double-staining technique.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cimenos , Rutênio , Humanos , Rutênio/farmacologia , Rutênio/química , Espécies Reativas de Oxigênio/metabolismo , Células HEK293 , Espectroscopia de Infravermelho com Transformada de Fourier , Apoptose , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Antineoplásicos/química , Hidrazinas/farmacologia , Linhagem Celular Tumoral
20.
Chem Biol Interact ; 392: 110921, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382705

RESUMO

Cyclometalated Ir(III) complex [Ir(L)2(dppz)]PF6 (where L = 1-methyl-2-(thiophen-2-yl)-1H-benzo[d]imidazole and dppz = dipyrido [3,2-a:2',3'-c]phenazine) (Ir1) is potent anticancer agent whose potency can be significantly increased by irradiation with blue light. Structural features of the cyclometalated Ir(III) complex Ir1 investigated in this work, particularly the presence of dppz ligand possessing an extended planar area, suggest that this complex could interact with DNA. Here, we have shown that Ir1 accumulates predominantly in mitochondria of cancer cells where effectively and selectively binds mitochondrial (mt)DNA. Additionally, the results demonstrated that Ir1 effectively suppresses transcription of mitochondria-encoded genes, especially after irradiation, which may further affect mitochondrial (and thus also cellular) functions. The observation that Ir1 binds selectively to mtDNA implies that the mechanism of its biological activity in cancer cells may also be connected with its interaction and damage to mtDNA. Further investigations revealed that Ir1 tightly binds DNA in a cell-free environment, with sequence preference for GC over AT base pairs. Although the dppz ligand itself or as a ligand in structurally similar DNA-intercalating Ru polypyridine complexes based on dppz ligand intercalates into DNA, the DNA binding mode of Ir1 comprises surprisingly a groove binding rather than an intercalation. Also interestingly, after irradiation with visible (blue) light, Ir1 was capable of cleaving DNA, likely due to the production of superoxide anion radical. The results of this study show that mtDNA damage by Ir1 plays a significant role in its mechanism of antitumor efficacy. In addition, the results of this work are consistent with the hypothesis and support the view that targeting the mitochondrial genome is an effective strategy for anticancer (photo)therapy and that the class of photoactivatable dipyridophenazine Ir(III) compounds may represent prospective substances suitable for further testing.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , DNA Mitocondrial , Irídio/farmacologia , Irídio/química , Ligantes , Estudos Prospectivos , Mitocôndrias , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...